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The generalized means are used as a simple but elegant mixture rule for providing a unified
description of the physical properties of polyphase composites in terms of component
properties, volume fractions, and microstructures. This formula is named as the generalized
mixture rule (GMR). Taking porous materials as a special class of two-phase composites in
which pores are dispersed within a solid framework, the GMR yields a rigorous expression for
the porosity dependence of the mechanical properties. Although the GMR is purely
mathematical in origin, its connection to the existing theories and its consistence with
extensive experimental data suggests that it should have some physical validity as a hypothesis
or at least a very handy tool for a general description of the mechanical properties of
multiphase materials including porous solids. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Porosity is an important microstructural feature in
most natural and man-made materials and often affects
significantly physical properties of these materials such
as fluid permeability, thermal conductivity, electrical
conductivity, dielectric constant, magnetic permeability,
diffusion coefficient, acoustic wave velocities, elastic
moduli, and yield, rupture or ductile strength. Typical
examples of natural porous materials are sediments (e.g.,
soils, sands and sandstone). Better knowledge about the
porosity-dependence of rock mechanical properties is re-
quired to anticipate and minimise the technical problems
in oil reservoirs such as earth surface subsidence and
well-bore instability. Biological materials such as woods
and bones are equally porous materials. Man-made
porous materials such as foamed metals, sintered ceram-
ics, hollow concretes and cellular polymers are widely
used for thermal and acoustic insulation, impact energy
absorption, vibration suppression, air or water filtration,
fluid flow control, self-lubricating bearing, floatation and
lightweight components. Further, traditional construction
materials such as bricks, tiles, cements and concretes all
are porous. Thus, to model accurately the mechanical
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properties of candidate solid materials in terms of their
component properties, porosity and microstructure has
broad significance for a wide range of fields from
materials engineering to Earth sciences.

The modeling of composite mechanical properties is
involved in the utilization of appropriate mixture rules.
Actually some of the important rules can be unified by a
generalized mixture rule (GMR) expressed as:

M J
c =

N∑

i=1

(
Vi M J

i

)
(1)

where M is a specific property (e.g., Young’s modulus,
yield strength or ductile flow strength). V is the volume
fraction of component, the subscripts i and c represent,
respectively, the ith phase and the composite consisting
of N phases,

N∑

i=1

Vi = 1 (2)

Effects of microstructures are expressed by a scaling,
fractal parameter J, which is mainly controlled by the
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shape, size distribution, and distribution (continuity and
connectivity) of the phases [1, 2]. Mc(J) has the following
characteristics:

(a) Mc(J) is a continuous, monotone increasing function
for all J values in the ranges (−∞ ≤ J ≤ ∞). This mono-
tonicity stands with respect to either the volume fractions
or the physical properties.

(b) For J < 1, J = 1 and J > 1, Mc(J) as a function of the
individual grades of membership Mi is strongly concave,
linear, and strongly convex, respectively.

(c) For a binary system that consists of a strong phase
(s) and a weak phase (w), J < 0 for the weak-phase
supported structure while J > 0 for the strong-phase sup-
ported structure [1, 2]. The GMR fulfills the following
boundary conditions: for Vs = 0 (pure weak phase aggre-
gate), the effective properties are equivalent to the proper-
ties of the weak phase for all values of J. Similarly, for Vs

= 1 (pure strong phase aggregate), the effective properties
are equivalent to the properties of the strong phase for all
values of J. In the circumstance that Ms = Mw (two phases
have an equivalent property), then Mc = Ms = Mw for all
values of J and all values of Vs.

(d) The case J = 1 yields the arithmetic mean or Voigt
average (which assumes constant strain). The case J =
−1 yields the harmonic mean or Reuss average (which
assumes constant stress). For isotropic composites, the
Voigt and Reuss averages are generally regarded as the
upper and lower bounds for effective elastic properties
[3]. For a composite consisting of rigid particles in a
steady-state flowing matrix, however, its effective creep
strength may be lower than the Reuss bound as long as
the stress exponent of the matrix is sufficiently large, say,
>4. The GMR with J→0 yields the geometrical mean.
The latter becomes physically meaningless when one of
the constituent phases has a null property. In this special
case, the overall property of the composite acquired from
the geometrical mean will always vanish regardless of the
volume fraction of the constituent that has a null property.

Recently, Ji [2] showed that various celebrated expres-
sions such as Einstein’s equation for ideal, dilute suspen-
sions [4] and Roscoe’s formula for general solid-liquid
suspensions [5] can be derived as special cases from the
GMR using the microstructural parameter J = −0.4. It has
been demonstrated that the GMR works well for describ-
ing various mechanical properties (e.g., elastic moduli,
hardness, yield, and flow strengths for wide ranges of mul-
tiphase systems from natural rocks to industrial ceramics
and alloys. In this paper, we will display that the GMR is
also a good descriptive model to fit the experimental data
for the elastic and plastic mechanical properties of porous
materials (i.e., Ms/Mw→∞).

2. Analysis
For a two-phase composite, Equation 1 can be simpli-
fied:

M J
c = (1 − Vw)M J

s + Vw M J
w (3)

Figure 1 Relative tensile strengths of lotus-type porous cooper [6] as a
function of porosity. Theoretical curves labelled according to J values.

Porous materials are considered as a special class of
two-phase composites in which null strength pores are
dispersed within a solid framework. Then setting the me-
chanical property of the weak phase equals to zero (i.e.,
Mw = 0) and taking Vw as the volume fraction porosity
(p) allow an estimation of the effect of porosity on the
property. Equation 3 can be written as

Mc

Ms
= (1 − p)1/J = V 1/J

s =
(

ρc

ρs

)1/J

(4)

where J is the parameter that depends on the geometrical
shape, spatial arrangement, orientation and size distribu-
tion of pores, and in turn on the materials and the fabrica-
tion method (i.e., cold pressing, sintering, or hot isostatic
pressing), ρc and ρs are the densities of the porous and
nonporous materials, respectively. ρc/ρs is the relative
density that equals the volume fraction mass. On the plots
of log(Mc/Ms) versus log(1 − p) or log(ρc/ρs), 1/J is the
slope of the property dependence over the linear range.
The value of J should lie in the range from 0 to 1, giving
a wide range of properties at a given relative density or
porosity. The variation of J with microstructure yields a
large possibility to optimize the mechanical properties of
porous solids. Further, porosity has a greater effect on the
mechanical properties at smaller values of J.

J = 1 for porous materials with long cylindrical or
hexagonal pores aligned parallel to the stress direction,

Mc

Ms
= 1 − p = ρc

ρs
(5)

Equation 5 yields a linear relationship between Mc/Ms

and p, and good agreement with experimental results of
lotus-type porous metals with the long pores parallel to
the loading direction [6, 7] (see Fig. 1). J = 0 represents an
extreme case where the effective property of a porous ma-
terial will vanish, regardless of porosity. Generally, inter-
granular, continuous, channel pores cavities cause a lower
J value than intragranular, isolated and rounded pores.
The open pores exhibit a lower J value and thus more
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pronounced effects on the effective mechanical proper-
ties than the closed pores. Thus, the complex dependence
of J on microstructure is a crucial subject for study in order
to better predict and optimize the mechanical properties
of porous solids.

Equation 4 can be expanded to a power series:

Mc

Ms
= 1 +

(
− 1

J
p

)
+

1
J

(
1
J − 1

)

2
p2

+
(− 1

J

)(
1
J − 1

)(
1
J − 2

)

6
p3 + · · · (6)

For low values of porosity (p �1), Equation 6 can be
reasonably approximated by

Mc

Ms
= 1 − 1

J
p (7)

Equation 7 indicates a linear relation between Mc/Ms and
p at low porosities (p < 0.10–0.15).

The pore shape, which is one of the most important
factors to affect the J value, can be characterized by the
shape factor (S) that is defined below:

S = 4π A/L2 (8)

where A is the pore area and L is the pore perimeter in a
random thin section. Both A and L can be measured using
quantitative image analysis. S decreases in magnitude as
the pore outline becomes more irregular. For example,
S = 1 for a perfect circle, S = 0.785 for a square, S
= 0.604 for equilateral triangle, and S approaches zero
if the pore shape becomes a line [8]. It is found that
spherical pores generally occur at low porosities. As the
porosity increases, the shape factor decreases and the pore
geometry becomes increasingly more complex. When the
porosity is higher than a critical value (pc1), the pores
become increasingly more open [9]. Moreover, large pores
are generally more irregular than small pores, indicating
that the large pores may form from the agglomeration of
small pores. As a result, the S value decreases [10] and so
does the J value with increasing pore size. Conversely, a
trend of decreasing S with decreasing pore size may result
if small irregular pores were produced by fragmentation
of large smooth ones. Thus, the J value may reflect the
formation processes of the materials.

Furthermore, the mechanical properties of a nonporous
material can be estimated from its porous counterpart ac-
cording to the following equation:

Ms =
[

M J
c

1 − φ

]1/J

(9)

For an inversion purpose, an analytical formula like
Equation 9 is advantageous than complicated and tedious
computational codes.

3. Comparison with other expressions
Because it is obviously prohibitive to determine experi-
mentally the effective properties of each porous material
of interest, numerous empirical and theoretical relations
have been proposed to describe the dependence of me-
chanical property of materials to their porosities. The em-
pirical relations attempt to best-fit experimental data, but
the physical meaning of the relations is unclear. However,
the theoretical models, in spite of using the first physical
principles, are based on some idealized microstructures
(e.g., uniform spherical, cylindrical or cubic pores are
arranged in a cubic array [11–14], and the derived corre-
lations between the effective properties and porosity often
cannot be extended to real materials with irregular shapes,
nonuniform size and random distribution of pores.

One of the most popular expressions is the following:

Mc

Ms
= (1 − p)m (10)

where m is an adjustable parameter. In Equation 10, M
represents the Young’s modulus (E), shear modulus (G),
bulk modulus (K), yield strength (σ y), rupture strength
(σ r), or flow strength (σ f ). Equation 10 was first pro-
posed by Balshin [15] as an empirical equation. Based on
the assumption that a porous material consists of a 3D
intertwined, continuous network of material chains and
open-pore channels, Wong et al. [16] and Wagh et al.
[17] derived Equation 10 as a theoretical formula for the
porosity dependence of the Young’s modulus. These au-
thors named the expression as the connected-grain or open
pore model.

The comparison of Equation 10 with Equation 4 yields
m = 1/J. In the elastic field, the exponent m has been
related to the stress concentrations that develop around
pores [18, 19], and named as the elastic stress concentra-
tion factor of the pores [7, 20–22]. Based on 3D elastic-
ity theory for the stress concentration around spheroidal
pores (Z is the axis of revolution and X is the axis perpen-
dicular to Z) in a material under uniaxial stress, Boccac-
cini et al. [21] obtained the following results: For spherical
pores (Z/X = 1), m = 2 and thus J = 0.5. For infinitely
long cylindrical pores (Z/X→∞) oriented perpendicular
to the stress direction, m = 3 and thus J = 1/3 (Fig. 1).
For lotus-type porous materials with long cylindrical or
hexagonal pores (Z/X→∞) oriented parallel to the stress
direction, there is no stress concentration effect [23] and
m→1 or J→1 (Fig. 1).

The porosity dependence of physical properties of
porous materials can be evaluated using an assumption
that the relative property of interest (Mc/Ms) is equal to
the ratio of the minimum solid area (MSA) to the cell
area normal to the reference stress [14]. The MSA can be
easily calculated for idealized structures, that is, regular
stacking of uniform (spherical, spheroidal, cylindrical or
cubic) pores in a continuous solid medium [11, 12]. The
variations of the MSA with porosity have been studied
for various ordered arrays of pores. It is generally found
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that the MSA can be related to the porosity for relatively
low volume fraction of porosity (p ≤ ∼0.4pc, where pc

is the critical porosity that corresponds to the percolation
limit of the solid phase) by an exponential function [14,
24, 25]:

A

A0
= exp(−bp) (11)

where A and A0 are, respectively, the solid areas of porous
and porosity-free materials, normal to the reference di-
rection; and b is a constant that depends on the array of
pores in the material. In other words, the value of ln(A/A0)
decreases linearly with the porosity with b equal to the
slope.

As the relative value of Mc/Ms is directly proportional
to that of A/A0 [14], thus:

Mc

Ms
= exp(−bp) (12)

Equation 12 was proposed first by Duckworth [26] as an
empirical equation and since then it has been widely used
to predict the effective mechanical properties of porous
materials with reasonable accuracy [14, 24, 25, 27]. Ac-
cording to Ramakrishan and Arunachalam [28], Equa-
tion 12 can be obtained using the differential methods
[29–31] under certain approximations.

Unlike Equation 4, Equation 12 displays an evident
disadvantage: the boundary condition that Mc should be
equal to zero when p is equal to 1 is not satisfied [32].
Actually Equation 12 breaks down when p→pc. Conse-
quently, Equation 12 is not valid over the full range of
porosity from 0 to 1 and can be used for only low values
of porosity (i.e., p ≤ 0.30).

Equation 12 can be expanded to a power series:

Mc

Ms
= 1 + (−bp) + (−bp)2

2
+ (−bp)3

6
+ · · · (13)

For low values of porosity (i.e., p � 1), Equation 13
can be reasonably approximated by the first term of the
above series expansion.

Mc

Ms
= 1 − bp (14)

Equation 14 yields the same formula as that proposed by
Hashin [33] and Rossi [34].

Comparison between Equations 7 and 14 gives J = 1/b.
For many porous polycrystalline materials, the b values
have been determined for each property and can be con-
verted to the J values (Fig. 2). Therefore, the exponential
expression as described by Equation 12 can be derived
directly from the GMR for the porous materials with rela-
tively low values of porosity (p � 1 where there are most
data).

Figure 2 Histograms of J-values for the Young’s modulus (a) and shear
modulus (b) of polycrystalline aggregates. Data mainly from [14, 25]. N,
the number of measurements; JMe, the median (the fiftieth percentile in the
distribution).

Considering the linear-elastic edge deflection of open-
cell foams, Gibson and Ashby [13] pursued a simple re-
lation for the Young’s modulus of the cellular solids:

Ec

Es
= C

(
ρc

ρs

)n

= C(1 − p)n (15)

where C and n are constants that depend on the mi-
crostructure of the foam. Setting ρc equal to ρs or p = 0
in Equation 15 does not yield the boundary condition
that Ec is equal to Es if C�=1. To satisfy this boundary
condition will require C=1 and in turn Equation 15
becomes identical to our Equation 4 with J = 1/n.
Fitting the experimental data [35–37 ] with Equation 15,
Gibson and Ashby [13] obtained n = 2, which corre-
sponds J = 0.5 in Equation 4. In the case of porous
materials with a honeycomb structure, Gibson and
Ashby [13] show that n = 1 (i.e., J = 1) and n = 3
(J = 1/3) for the directions parallel to and perpendicular
to the direction of pores, respectively (Fig. 1).

Based on an assumption that the relative property of
interest (Mc/Ms) equals the ratio of the minimum solid
area (MSA) to the cell area normal to the reference stress,
and using an ideal microstructure that uniform spherical
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Figure 3 Comparison of the GMR with the theoretical models of Eudier
[11] and Ramakrishnan and Arunachalam [38].

pores are arranged in a simple cubic array, Eudier [11]
obtained

Mc

Ms
= 1 − π

(
3

4π

)2/3

p2/3 = 1 − 1.21p2/3 (16)

In the Eudier’s model, the critical value of p for the
cubic packing geometry is π /6 or 0.524, over which
the pores should overlap each other. In other words, a
transition from isolated and closed to open and intercon-
nected porous structures occurs when p ≥ 0.524. More-
over, Mc/Ms will reach zero once p = 4/(3

√
π) or 0.752.

For p > Pc = 0.752, Equation 16 becomes no longer valid.
At p ≤ 0.30, the Eudier’s model can be approximated by
the GMR with J = 0.410 (Fig. 3a).

Further, Ramakrishnan and Arunachalam [38] derived
the following equation for an isolated spherical pore ge-
ometry:

Mc

Ms
= (1 − p2)

1 + βp
(17)

where β is a parameter that is a function of zero-porosity
Poisson’s ratio (υ0) of the solid matrix.

βK = 1 + υ0

2(1 − 2υ0)
(18)

βG = 11 − 19υ0

4(1 + υ0)
(19)

βE = 2 − 3υ0 (20)

for the bulk (K), shear (G) and Young’s (E) moduli, respec-
tively. βK = βG =βE = 1.25 when υ0 = 0.25. Equation 17
can be represented by the GMR. For example, the case
of β = 1.25 is approximately equivalent to J = 0.509
(Fig. 3b).

For solids containing cubic pores,

Mc

Ms
= 1 − kp2/3 (21)

where k = 1,
√

2 and
√

3 for cubic pores with their 〈100〉,
〈110〉 and 〈111〉 directions parallel to the reference direc-
tion, respectively [14, 39]. Equation 21 with k = 1,

√
2

and
√

3 can be approximated, respectively, by the GMR
with J = 0.507, 0.321 and 0.237 at p ≤ 0.26 (Fig. 4).
Clearly, the J value decreases progressively as the cu-
bic pores are oriented with their 〈100〉, 〈110〉 and 〈111〉
directions parallel to the reference direction.

It is necessary to point out that the theoretical models
summarized above, which were based on specific struc-
tures, cannot be extended to more general materials with
irregular shapes, varied size and random distribution of
the pores.

The microstructural evolution of a material with in-
creasing porosity is a 3D connectivity problem. According
to the percolation theory [40], there may exist two critical
porosity levels. When the porosity reaches the first critical
value (pc1), a microstructural transition occurs from fully
isolated and closed pores with nearly spherical or ellip-
soidal shapes to open and interconnected with complex
shapes. Finally, the effective strength or elastic modu-
lus vanishes when the porosity reaches the second criti-
cal value (pc). For polycrystalline materials composed of
identical spherical particles arranged in cubic, orthorhom-
bic and rhombohedral arrays, Knudsen [24] obtained the
theoretical pc values of 0.476, 0.397 and 0.26, respec-
tively. For powder materials, the pc value seems to be the
apparent porosity of the powder before densification by
sintering or hot pressing [41]. Therefore, three regimes
can be identified: (1) At low porosity levels (p < pc1),
pores are fully isolated and closed with nearly spherical
or ellipsoidal shapes; (2) At intermediate porosity levels
(pc1 ≤ p < pc), interconnected pores with complex shapes
are present; (3) The stress-supporting solid framework
fails when p ≥ pc.
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Figure 4 Relative mechanical properties of solids containing cubic pores
with their 〈100〉 (a), 〈110〉 (b) and 〈111〉 (c) directions parallel to the loading
direction.

One important consequence of the microstructural tran-
sition at pc1 is that the mechanical properties of porous
materials in regime 2 (pc1 ≤ p < pc) cannot be repre-
sented by Equation 4; if this is attempted then there will
be an apparent decrease in J with increasing p. Thus, p in
Equation 4 for the intermediate regime may be replaced
reasonably by the effective porosity (p/pc) due to the in-

terconnection of pores.

Mc

Ms
=

(
1 − p

pc

)1/J

(22)

with p ≤ pc and pc ≤ 1. Equation 22 yields the same
formula proposed by Phani [20] as an empirical equation
for the Young’s modulus-porosity relation in gypsum
systems.

4. Comparison with experiments
Fig. 5 gives an example for the comparison between the
experimentally measured relative Young’s moduli (Ec/Es)
and the theoretical values calculated from the GMR. The
experimental data for porous Al2O3 polycrystalline ag-
gregates with porosities ≤30% [42] can be well fitted
with Equation 22 with J = 0.284 and pc = 1 (Fig. 5a).
As shown in Fig. 5b, Equation 22 with J = 0.263 and
pc = 1 yields a good fit to experimental data for porous
Al2O3 with p ≤ 40% [27]. Experimental data for porous
MgO aggregates with p ≤ 40% [44] are in good agreement
with Equation 22 using J = 0.241 and pc = 1 (Fig. 5c).
Equation 21 with J = 0.270 and pc = 1 works very well
for fitting the experimental data for polycrystalline SiC
aggregates with p ≤ 42% (Fig. 5d, [44]). Porter et al. [45]
studied the elasticity of polycrystalline spinel (MgAl2O4)
aggregates prepared by hot pressing. Their data on the
porosity-dependence of Young’s and shear moduli are
consistent with the GMR with J = 0.270 (Fig. 5e) and
J = 0.280 (Fig. 5f), respectively.

Walsh et al. [46] carried out a series of experiments on
the bulk moduli (K) of glass foams over a range of porosi-
ties from 0 to 0.7. In the samples, the pores are nearly
spherical and non-interconnecting [47]. Their experimen-
tal data are plotted in Fig. 6a for comparison with the val-
ues calculated from Equation 22. The experimental data
essentially track the calculated curve with J = 0.505 and
pc = 1 for samples with p ≤ 0.50. The Hashin-Shtrikman
[47] upper bound (HS+) overestimates the actual elastic
modulus. The Hashin-Shtrikman lower bound (HS−) is
physical meaningless because it results in a zero value
for all elastic moduli regardless of the porosity. Fig. 6a
displays that the GMR yields a better description than the
self-consistent (SC, [3, 48, 49]) approximation and the
differential method (DM, [49, 50]). Further, the exponen-
tial expression Equation 11 is obviously disqualified for
describing the data at high porosities.

Ishai and Cohen [51] measured the compressive yield
strengths of porous epoxy at constant strain rates from
2.25 × 10−2/s to 4.50 × 10−5 /s. The samples, contain-
ing up to 66% porosities, were prepared by whipping
the epoxy liquid at different speeds and times according
to the desired void ratios. Most of the pores had nearly
spherical geometry. Their experimental data except one
(Fig. 6b) are in good agreement with Equation 22 with J
= 0.513 and pc = 1. The anomaly for a sample with 7%
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Figure 5 Comparison of the theoretical values calculated from the GMR with experimental data on relative Young’s modulus (a–e) and shear modulus (d)
of porous materials. (a–b) Al2O3 [42, 43], (c) MgO [43], (d) SiC [44], and (e–f) MgAl2O4 [45].

porosity may be due to some errors in the measurement.
For phosphate-bonded, alumina filled, magnesia ceram-
ics dominated by shaped-cornered holes and flat elliptical
cavities [52], however, the experimental data (Fig. 6c) are
well fitted by the GMR with J = 0.146, pc = 1. The exper-
imental data on the compressive strength of Cu/Cu2O cer-

mets with morphologically complex intergranular pores
[53] yield a low value of J (J = 0.140, Fig. 6d).

Interestingly, Fig. 6 displays a clear effect of pore ge-
ometry on the mechanical properties of solid materials.
Isolated spherical pores cause the J value to be higher
than shaped-cornered holes and flat elliptical cavities. The
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Figure 6 Comparison between experimental and theoretical results for relative bulk modulus for (a) glass foams [44], yield strength of (b) porous epoxy
[51], Young’s modulus of (c) phosphate-bonded, alumina filled magnesia ceramics [52], and (d) Cu/Cu2O cermets [53]. DM, HS+, and SC represent
differential method [49, 50], the Hashin-Shtrikman upper bound [47], and the self-consistent approximation [49, 50], respectively.

value of J ≈ 0.5 for porous glass [47] and epoxy [51] is
consistent with the theoretical prediction [21] for a solid
containing isolated spherical pores.

The above comparison between calculation and exper-
iment yields consistently pc = 1. This indicates that the
effective mechanical properties does not vanish unless
p = 1. This is also consistent with a fact that it is possi-
ble to fabricate ceramics with a porosity as high as 0.93
[13]. This implies that the solid medium in the samples
form a continuous stress-supporting framework although
the pores can be interconnected. Therefore, Equation 22
is exactly identical to Equation 4, the latter is derived
directly from the GMR, for the materials with pc = 1.

Berge et al. [54] investigated the elasticity of synthetic
sandstone using sintered glass beads with porosities rang-
ing from 1 to 43%. The glass has Es = 72.33 GPa, Gs =
29.2 GPa. Fig. 7 displays a clear drop of the relative elas-
tic moduli Ec/Es and Gc/Gs and towards a critical porosity
(pc1) of ∼0.30. For porosities below ∼0.30, the samples
have similar microstructures with isolated pores embed-
ded in a continuous solid glass [54] and the experimental
data can be well described by the GMR Equation 4 with J
= 0.405 and J = 0.409 for E and G, respectively. The crit-

ical porosity pc1 presumably coincides with the minimum
porosity for near-closely packed quasi-identical spheres.
The J values for E and G decreases progressively from
∼0.41 to ∼0.25 with increasing porosity from ∼0.30 to
0.43, reflecting that the geometry of pores in the syn-
thetic sandstone becomes complex due to the interaction
between pores in this range of porosities.

Figs 8 and 9 demonstrate the relationship between
ductile strength and porosity for sintered powder metal
compacts such iron, cooper, aluminum, nickel and their
alloys [10, 55–57]. Up to a porosity p = ∼0.25, the
strength of samples can be well described by the GMR
Equation 4 with J = ∼0.25. For higher porosities
(p > ∼0.25), however, the J value to fit the experimen-
tal data decreases progressively with increasing porosity.
Although no detailed information about the actual pore
shape at different porosity levels is available from the
original literature, it is likely that the loss of isolation of
the pores occurs at p > ∼0.25. The pores change from be-
ing isolated, closed and sharp-cornered to interconnected
channel pores.

Using an ultrasonic technique, Matikas et al. [58]
measured the longitudinal (P-wave) and shear (S-wave)
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Figure 7 Comparison between experimental and theoretical results for
relative Young’s modulus (a) and shear modulus (b) for sandstone analogs
made from fused glass beads [44]. Theoretical curves labelled according to
J values. HS+ represent the Hashin-Shtrikman upper bound.

acoustic velocities (Vp and Vs) and then calculated the
Young’s, shear and bulk moduli as well as the Poisson’s
ratio for porous titanium aluminide compacts. The rela-
tive elastic properties as a function of porosity are plotted
in Fig. 10. J = 0.531 and J = 0.385 for Vp and Vs, re-
spectively. For the same set of samples, J values needed
to best fit the experimental data are different for different
elastic properties: J = 0.550, 0.248, 0.227 and 0.134 for
the Poisson’s ratio (υ), shear modulus (G), Young’s mod-
ulus (E) and bulk modulus (K), respectively. This aspect
should receive a further detailed study.

Fig. 11 illustrates a general trend of the variation in
the P- and S-wave velocities in water-saturated basalts
at a confining pressure of 200 MPa [59]. The results
are of geological interests because the oceanic crust is
compositionally dominated by the basalts. The GMR with
J = 0.235 and J = 0.214 provides statistically meaningful
descriptions for the Vp and Vs data, respectively. Scatter
in the velocity data plots can be attributed to variations
in shape, size, and spatial distributions and orientations
of pores within the natural basaltic samples.

Figure 8 Relative strengths for (a) Fe aggregates [55], (b) sintered steels
[10], and (c) Fe-Cu alloys [56] alloys plotted against porosity.

5. Discussion and conclusions
The expression of the generalized mixture rule (GMR)
has several characteristics:

(1) The GMR is a rigorous mathematical formula that
is of a simple symmetry. It postulates no assumptions
on either physical properties or processes (e.g., isostrain
or isostress) or microstructures (e.g., oversimplified unit
cell). Thus, it is reasonable to believe that the GMR re-
flects the random nature of microstructure in polyphase
materials.

(2) The GMR provides a unified description for the
best fitting relationship between the overall mechanical
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Figure 9 Relative strengths for (a) sintered Cu, Ni and Fe [57] and (b)
sintered Al [57] plotted against porosity.

properties (e.g., elastic constants, yield and flow
strengths) and the volume fraction and microstructure
of each component in the multiphase composites. For
porous solids, various well-known equations such as
Balshin power law [15], Duckworth exponential equation
[26], Gibson-Ashby formula [13], and Phani expres-
sion [20] on the relationship between the mechanical

properties and porosity can be derived directly from
the GMR. For porosities <30%, the GMR is consistent
with the results of previous theoretical models based
on some idealized uniform structures (e.g., Eudier [11],
Ramakrishnan and Arunachalam [38], Ishai and Cohen
[39], and Rice [14]) within an error of no more than a
few percent. Further, the agreement between the GMR
and extensive experimental data on wide ranges of
polyphase systems including porous solids could not be
considered to be fortuitous. The GMR should have some
physical validity as a theory or at least a hypothesis or
a phenomenological tool for a general description of the
mechanical properties of multiphase materials including
porous solids. Rigorous theoretical analyses, which could
be a very challenging topic of mathematic mechanics,
are definitively needed because the fundamental physical
meaning of the GMR has not been clear. Thus the present
work provides a foundation upon which to base further
studies.

(3) The characteristic exponent J of the GMR provides a
scaling parameter for quantitatively describing the effects
of complex microstructures on the overall physical prop-
erties. This parameter, which is named as the microstruc-
tural coefficient, is controlled mainly by the shape, size
distribution, continuity and connectivity of the phases, and
may reflect the formation processes of the materials. Thus,
the J value can be used to classify the polyphase materi-
als. For lotus-type porous materials with long cylindrical
or hexagonal pores oriented parallel and perpendicular
to the stress direction, J = 1 and J = 1/3, respectively
(Fig. 1). J→0 (the geometrical mean), which equivalent
to the Hashin and Shtrikman lower bound [33] in the case
of porous materials), represents an extreme case where
the effective property of a porous material will vanish,
regardless of porosity. J = ∼0.50 for porous materials
in which isolate, perfectly spherical pores are embedded
randomly in a continuous solid matrix (Fig. 6a and b).
For the Young’s modulus, J = ∼0.25 for polycrystalline
materials containing shaped-cornered holes (Fig. 2a,

Figure 10 Relative elastic properties (E, G, K, υ, Vp and Vs) for titanium aluminide (Ti-24Al-11Nb) compacts [58] plotted against porosity.
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Figure 11 P- and S-wave velocities (km/s) in water-saturated basalts [59] plotted against porosity.

5b and c, 8a–c and 9). The presence of flat elliptical
cavities will result in a smaller value of J (Fig. 6c and d).
Generally, intergranular, continuous, channel pores cav-
ities cause a lower J value than intragranular, isolated
and rounded pores. Hence, rounding and disconnecting
the pores should result in an increase in the effective me-
chanical properties of materials with a constant porosity.
In other words, optimizing the overall mechanical proper-
ties of materials can be done through introducing different
volume fractions and/or different shapes of pores into the
solids. An additional finding is that the values of J for
shear, Young’s, shear and bulk moduli and Poisson’s ratio
may not be identical even for a porous material with a
constant microstructure (Fig. 10). Hence, there is a need
for further careful investigation on this subject.

(4) The application of the GMR to predict the overall
properties of polyphase materials is more direct compared
with other approaches such as Hashin and Shtrikman up-
per and lower bounds [33]. In the case of elasticity, the
GMR does not need to know bulk or shear moduli sep-
arately. However, the calculations of Hashin and Shtrik-
man bounds require full information on the bulk and shear
moduli of each phase of the materials. A full set of elastic
data is usually lacking because only one elastic property is
often measured. In the latter cases, the Hashin and Shtrik-
man bounds cannot be calculated. For porous materials,
the Hashin and Shtrikman upper and lower bounds lie too
far apart to be useful in predicting elastic properties as a
function of porosity because the pores have a null strength
and the Hashin and Shtrikman lower bound is always zero
for all moduli regardless of the porosity.
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